lesus M Gonzalez-Barahona

Characterizing outdateness with technical lag

lesus M. Gonzalez-Barahona

Universidad Rey Juan Carlos

@igbarah

https://jgbarah.github.io/presentations

3rd Intl. Workshop on Software Health (SoHeal 2020) July 3rd 2020

lesus M Gonzalez-Barahona

The plan

- 1 Context
- Outdateness
- 3 Outdateness as technical lag
- 4 Applications of the model
- **6** Final notes

Jesus M. Gonzalez-Barahona

Context

Applications of the

Jesus M. Gonzalez-Barahona (URJC)

Technical Lag Outdateness

3rd Intl. Workshop on Software Health (S

lesus M Gonzalez-Barahona

Context

Context

Applications are composed of tens, maybe hundreds of components

Each component is normally used as a package ...and that package has a story

Jesus M. Gonzalez-Barahona

Context

Applications of the

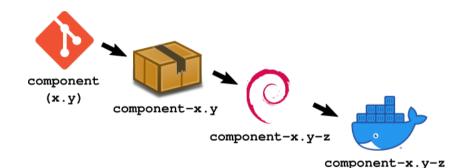


image-x.y

lesus M Gonzalez-Barahona

Context

Main goal:

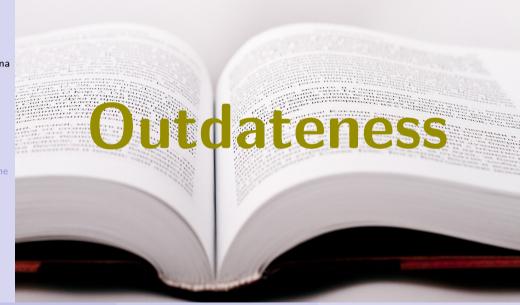
How can we compute outdateness for an application considering all its components?

lesus M Gonzalez-Barahona

Context

Secondary goals:

- Metrics useful for several situations
- Factors imposing a lower bound on outdateness
- Metrics for characterizing an ecosystem


How.

Technical lag framework

Jesus M. Gonzalez-Barahona

Outdateness

Applications of the

Jesus M. Gonzalez-Barahona (URJC)

Technical Lag Outdateness

3rd Intl. Workshop on Software Health (S

Jesus M. Gonzalez-Barahona

Context

Outdateness

Outdateness as technical lag

Applications of the model

Final notes

Outdateness of an application

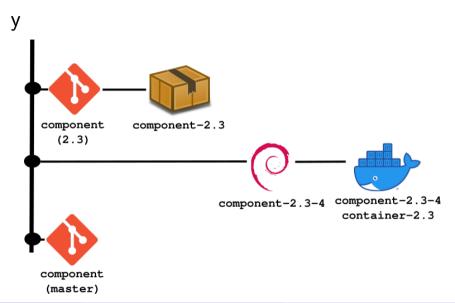
How outdated it is, due to its components being outdated?

How old are its components with respect to the latest version available from upstream?

lesus M Gonzalez-Barahona ldea

Outdateness

Most up to date:

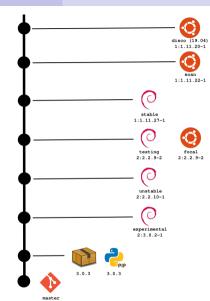

current master in upstream git repo

Map all packages to git commits

Jesus M. Gonzalez-Barahona

Outdateness

Applications of the



(URJC)

Jesus M. Gonzalez-Barahona

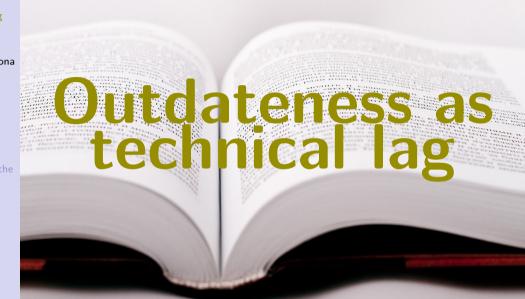
Outdateness

Applications of the

Outdateness as technical lag

Technical Lag
Outdateness

Jesus M. Gonzalez-Barahona


Contex

Outdatenes

Outdateness as technical lag

Applications of the model

Final notes

Jesus M. Gonzalez-Barahona (URJC)

Technical Lag Outdateness

3rd Intl. Workshop on Software Health (S

lesus M Gonzalez-Barahona

Outdateness as technical lag

Technical lag

 $\mathcal{F} = (\mathcal{C}, \mathcal{L}, ideal, delta, agg)$

- \bullet C set of component releases
- L set of possible lag values
- **ideal** : $\mathcal{C} \to \mathcal{C}$ function returning the "most preferred" component release
- **delta** : $\mathcal{C} \times \mathcal{C} \to \mathcal{L}$ function computing the difference between two component releases
- $\mathbf{agg} : \mathbb{P}(\mathcal{L}) \to \mathcal{L}$ function aggregating lag values for a set of components. (URJC) Technical Lag Outdateness

lesus M Gonzalez-Barahona

Outdateness as technical lag

Computing difference

Difference between two components is the difference between their two most likely commits in the upstream repo

lesus M Gonzalez-Barahona

Outdateness as technical lag

Outdateness

Technical lag (with previous definition for difference) between a component and current upstream master

Outdateness

 $outdateness(A) = agg(techlaq(C_i)C_i \in components(A))$

outdateness(C_{iv}) =

 $techlag_{\mathcal{F}_A}(C_{iv}) = delta(C_{iv}, ideal(C_{iv})) =$

Outdateness as technical lag

Aggregation:

 $delta(C_{in}, C_{recent})$

Applications of the model

Technical Lag Outdateness

Jesus M. Gonzalez-Barahona

Applications of the model

Technical Lag Outdateness

3rd Intl. Workshop on Software Health (S

lesus M Gonzalez-Barahona

Applications of the model

Minimum outdateness

- Minimum outdateness possible is outdateness of latest package by upstream
- Influenced by publication practices
- Different collections, different minimum outdateness for same component
- Example: Django

 $Pypi < Debian_{testing} < Ubuntu_{focal} < Debian_{stable}$

lesus M Gonzalez-Barahona

Applications of the model

Collections

- Characterizable by mean / median outdateness
- Example: LTS, testing, experimental releases
- Example: components from Pypi or from Debian
- Example: effect of pinning dependencies

lesus M Gonzalez-Barahona

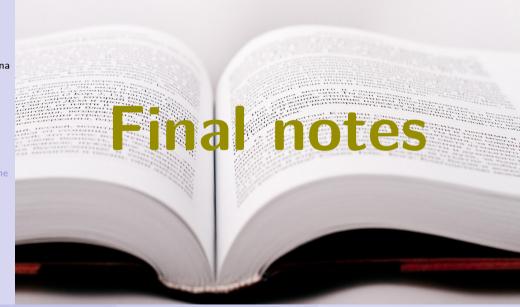
Applications of the model

Applications

- For an application, mean / median outdateness can be computed per collection (constrained by dependencies)
- Decisions on dependencies for a certain collection

lesus M Gonzalez-Barahona

Applications of the model


Comparing collections

- Absolute outdateness.
- Dependency outdateness

Jesus M. Gonzalez-Barahona

Applications of the

Final notes

Jesus M. Gonzalez-Barahona (URJC)

Technical Lag Outdateness

3rd Intl. Workshop on Software Health (S

lesus M Gonzalez-Barahona

Final notes

Conclusions

Technical lag can be used to precisely define outdateness

Outdateness can be used to:

- compute impact of release policies
- compare collections
- compute the effect of constraints on dependencies
- make decisions on dependencies, collections

lesus M Gonzalez-Barahona

Final notes

Credits

Book, by NikolayFrolochkin, Pixabay.

License: Creative Commons CC0

lesus M Gonzalez-Barahona

Final notes

©2020 Jesus M. Gonzalez-Barahona

Some rights reserved. This document is distributed under the terms of the Creative Commons License "Attribution-ShareAlike 4.0". available in

http://creativecommons.org/licenses/bv-sa/4.0/

This document (including source) is available from https://jgbarah.github.io/presentations